A.H0:β0=β1=0,并运用F检验
B.H0:β1=0,并运用F检验
C.H0:β1=0,运用T检验
D.B和C都是正确的,可以仍选其一进行检验
为另一种形式:斜率与原来相同,但截距和误差有所不同,并且新的误差期望值为零。
A.一元线性回归预测是回归预测的基础,预测对象只受一个主要因素影响
B.判定一个线性回归方程的拟合程度的优劣称为模型的显著性检验,通常用的检验法是相关系数检验法
C.相关系数等于回归平方和在总平方和中所占的比率,即回归方程所能解释的因变量变异性的百分比,是一元回归模型中用来衡量两个变量之间相关程度的判定指标
D.如果相关系数r=0,表示所有的观测值全部落在回归直线上;如果r=1,则表示自变量与因变量无线性关系
A.为显著性水平,k为回归模型中自变量的个数,n为样本容量
B.为显著性水平,k为样本容量,n为回归模型中自变量的个数
C.为显著性水平,k为回归模型中自变量的次数,n为样本容量
D.为显著性水平,k为回归模型中自变量的个数,n为回归模型中自变量的次数
A.二元线性回归
B.二元二次线性回归
C.多元线性回归
D.一元线性回归
A.残差平方和越大,β1的方差的估计量越大
B.样本容量越大,β1的方差的估计量越小
C.Xi的方差越大,β1的方差的估计量越小
D.Xi的方差越大,β1的方差的估计量越大。
考虑简单回归模型
y=β0+β1x+u
令z为x的二值工具变量。运用教材(15.0),证明Ⅳ估计量β1可以写成:的那部分样本中yi和xi的样本平均值,而的样本平均值。该估计量称为群组估计量,它是由沃德(Wald,1940)最先提出。